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Chapter 1

Physical Component Modeling in
solidThinking Activate

1.1 Introduction

solidThinking Activate blocks communicate data with other blocks through ports that are specified as
inputs and outputs. Produced data is placed on a block output port and retrieved through the input port
of one or more other blocks.

Even though it is possible to model many physical systems containing components in solidThinking
Activate, this generally requires translating the implicit equations representing the behavior of the phys-
ical components into explicit form and as a result, the resulting solidThinking Activate diagrams may
differ significantly from the original component-based diagrams.

The fundamental reason for which standard solidThinking Activate blocks are not well suited for
modeling physical components is that component ports are connectors which, unlike block ports, need
not be specified as inputs or outputs.

1.2 Components

A component places general constraints on its port signals. For example an electrical resistor specifies
relations between the currents and voltages on its ports (in particular that the sum of currents flowing
in is zero and that the difference of voltages is proportional to the current), but the component does
not require any current or voltage to be an input or output. So the component model should be able to
represent the behavior of the component regardless of the way it is used in a diagram.

solidThinking Activate provides facilities to create models including both blocks and components in
a consistent way. For that, it uses the methodology originally developed for Scicos. Components and
blocks can co-exist in the same diagram but block and component ports cannot be interconnected. The
connection of the two worlds is done through Special blocks containing mixed port types.

Components in solidThinking Activate are called implicit blocks. The behavior of implicit blocks cannot
be defined conveniently through explicit functions. In a regular block, a function may provide the value
of the output as a function of the input, but in an implicit block since the inputs and outputs cannot be
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specified, at best such a description would require multiple functions considering various input/output
scenarios. But even then the resulting simulation code would be inefficient.

1.3 Modelica

In solidThinking Activate, the behavior of implicit blocks is specified through symbolic equations.
Unlike regular blocks that may be regarded as black boxes, implicit blocks expose the implicit equations
of the corresponding component. solidThinking Activate then can, through symbolic manipulation,
use these equations to produce efficient code for models obtained from the interconnection of implicit
blocks. The symbolic specification of the behavior of implicit blocks in solidThinking Activate is done
using the MODELICA language (see www.modelica.org).

1.4 Application and Implementation in solidThinking Activate

As introduced above, solidThinking Activate formalism allows for mixing implicit and explicit blocks.
The actual use of those components is possible through the use of a toolbox, called COSELICA which
provides a compiler and a library of blocks.

The COSELICA library is described in chapter 2 and Use Cases are presented in the following chapters.
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Chapter 2

COSELICA Toolbox for Physical
Component Modeling in solidThinking
Activate

2.1 Introduction

COSELICA is a library of physical components for solidThinking Activate covering various physical
domains, such as mechanics, electrics, electronics, and thermodynamics.

These components are provided as solidThinking Activate blocks and they can be found in hierarchi-
cal palettes named Coselica under the Toolbox category, provided the COSELICA add-on is installed.

Figure 2.1: Palette Browser in solidThinking Activate

When dealing with physical components, all blocks have special connector ports and connecting them

9



Figure 2.2: First Simple Model (ElectricalCoil)

is like assembling a physical network. Such a physical network, assembled with COSELICA, is shown
in fig. 2.2. It represents the model of an electrical coil (Resistor and Inductor in series) driven by
a constant voltage source (Uconst=12).

In the model, there are two types of special connector ports: a filled blue square (positive pin) and
an empty blue square (negative pin). Modeling this electrical model is just like drawing an ordinary
schematic diagram, simply using all components needed from the Electrical I Analog palette
(cf. sec. 2.4.2).

2.2 Origin and Further Information

COSELICA library is internally implemented using the MODELICA language
(https://www.modelica.org).

For the most part COSELICA is a subset of the freely available Modelica Standard Library (https:
//www.modelica.org/libraries), herein after referred to as MSL.

This subset had to be modified to make it work within the Physical Component library of solidThinking
Activate, which currently supports only a subset of the MODELICA specifications 2.x (https://www.
modelica.org/documents).

A certain fraction of COSELICA (the Planar palette; cf. sec. 2.4.3) is inspired by the MultiBody
package of the MSL, adopted the graphical appearance and the user-visible structure. But it is a
significantly differing implementation.

COSELICA contains moreover, a number of blocks, which are unique and do not originate from MSL.
Please refer to sec. ??, for a more detailed description of the content and basic usage of COSELICA.
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2.3 Acausal and Causal Modeling

Conventional solidThinking Activate blocks have clearly defined input and output ports, where an
input can be regarded as cause and an output as effect. Models built solely with these blocks are
causal models. In contrast to that, most COSELICA blocks have neither identifiable input nor output
ports. Instead, they have connector ports which propagate physical quantities (e.g. electrical voltage
and current), and it is a priori undecided what quantity causes which effect. Models like that of fig. 2.2
are called acausal.

Figure 2.3: Simple Model for Simulation (ElectricalCoilWithSensors)

If we actually want to simulate and retrieve results from a purely acausal model, like that of fig. 2.2,
then we have to introduce some causality into the model. In other words, we need to decide which
quantities of the system are of interest for us. In COSELICA, this is usually achieved by adding appro-
priate sensors to the model, e.g. as shown in fig. 2.3. Here, we have added a VoltageSensor and
a CurrentSensor in order to “measure” the voltage across and the current flowing through the coil.
Both quantities are provided by the sensor blocks as real signals.

There are a number of COSELICA blocks (cf. sec. 2.4.1) available in order to deal with real signals.
However, in most cases it is preferable to make use of the rich and powerful set of conventional solid-
Thinking Activate blocks (like Mux and Scope in fig. 2.3) for further processing, saving, or plotting of
results.

A simulation time up to 0.01 yields the results as plotted in fig.2.4. As one might expect, the voltage
across the coil remains constantly at 12 (black curve). The current flowing through the coil (green curve)
exhibits a first-order delay characteristic, due to the dynamic behavior of the Inductor, i.e. the current
is initially zero and cannot follow instantaneously the voltage source step from 0 to 12 at t=0.

Please note, that direct connections between COSELICA and conventional solidThinking Activate
blocks are not allowed. For this purpose, one has to use special interface blocks
(see Coselica I Blocks I Interfaces).

In fig. 2.3, we have used RealOutput twice for a connection from COSELICA to solidThinking Acti-
vate. There is also a RealInput block for connections the other way around.
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Figure 2.4: Simulation Results (ElectricalCoilWithSensors)

Advantages of Acausal Modeling

Acausal modeling is nowadays very popular in engineering for the following benefits:

• time needed for modeling is decreased significantly,

• acausal models are easier to interpret,

• acausal models are highly reusable and shareable.

We will now derive and implement a purely causal model in order to justify the claimed advantages of
acausal modeling by example. This model shall be equivalent to that of fig. 2.3.

We denote the voltages across resistor and inductor by uR(t) and uL(t). The constant source voltage
shall be us(t) and the current flowing through the coil is denoted by i(t). Consequently, we can describe
the dynamic behavior of the electrical coil (cf. fig. 2.2) using three equations:

us(t) = uR(t) + uL(t) , (2.1)

uR(t) = R · i(t) , (2.2)

uL(t) = L
di(t)

dt
. (2.3)

We are only interested in uS(t) and i(t), but not in uR(t) and uL(t). Thus, we have to derive equations
for us(t) and i(t), which do not depend on uR and uL. us(t) is a priori known to be

us(t) = 12 . (2.4)

By insertion of eq. 2 & 3 in eq. 1, we get an ordinary first order differential equation

di(t)

dt
=

1

L
(us(t)−R · i(t)) , (2.5)
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Figure 2.5: Purely Causal Model (ElectricalCoilPurelyCausal)

which can be implemented by using conventional solidThinking Activate blocks as shown in fig. 2.5.
The interested reader may easily verify by himself, that simulation of fig. 2.5 (with initial condition
i(0) = 0) yields the very same results as shown in fig. 2.4.

2.4 Available Domains

A technical system is more often than not a physical multi-domain system (e.g. a DC motor consists
of an electrical and a mechanical part) and thus requires a modeling environment covering multiple
physical domains and interconnections between them. The available domains within COSELICA are
described in the following and their usage is illustrated by rather simple introductory examples.

2.4.1 Blocks (Real Signals)

All blocks in the Blocks palette are causal, i.e. they have input and outputs ports only. They are com-
monly used to generate and process real signals and resemble a subset of the Modelica.Blocks
package of the MSL. Almost all blocks of this palette are equivalent or very similar to their counterparts
found in the MSL.

Unique to COSELICA

The following blocks do not originate from the MSL:

• Interfaces I RealInput and Interfaces I RealInput

• Routing I DeMultplexVector2 and Routing I MultplexVector2

• Math I VectorsI . . . (except Sum and MatrixGain)

• Math I Nonlinear I Hysteresis and Math I Nonlinear I RateLimiter
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Figure 2.6: Type Coercion between Scalars and Vectors (ReplicatorExtractor)

Figure 2.7: Reversal of Causality (ReversalCausality)

Vector-Valued Real Signals

Most blocks work with scalar real signals only, but working with vector-valued real signals is possible as
well (see Routing and Math I Vectors).

Please note, there is no automatic type coercion between scalar real signals and real signal vectors of
length one. However, such type coercions can be implemented using Routing I Replicator and
Routing I Extractor (e.g. in fig. 2.6).

Reversal of Causality

Due to the nature of the underlying MODELICA language, it is possible to change an input into an
output port and vice versa. This can be done with Math I TwoOutputs and Math I TwoInputs.
For example, it is possible to implement the missing inverse hyperbolic sine function by reverting the
causality of the Sinh block as shown in fig. 2.7.

Example: Generation of a PWM Signal

PWM (pulse width modulation) signals are widely used for electrical power control (e.g. electrical heat-
ing, light dimmers, dc motors). Fig. 2.8 shows how a PWM signal can be generated. Its frequency
and duty cycle can be adjusted by setting the parameter k of Constant (Duty Cycle) and the
parameter period of SawTooth (Frequency).

The generated PWM signal, for k=30 (%) and period=0.0005, is shown in fig. 2.9.
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Figure 2.8: Generation of a PWM Signal (PWMSignal)

.png

Figure 2.9: PWM Signal (k = 30; period = 0.0005)
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2.4.2 Electrical I Analog

The Electrical I Analog palette contains various analog electric and electronic components,
such as resistor, capacitor, transformer, diode, transistor, switches, sources, sensors, and others. It
resembles a subset of the Modelica.Electrical.Analog package of the MSL. All blocks of this
palette are equivalent or very similar to their counterparts found in the MSL.

Links to other Domains

Blocks (Real Signals). Some blocks of the Sources palette (SignalVoltage and
SignalCurrent), all blocks of the Sensors palette, some blocks of the Basic palette (VariableResistor,
VariableCapacitor, VariableInductor), and some of the Ideal palette (IdealOpeningSwitch,
IdealClosingSwitch) provide connections to the domain of real signals (cf. sec. 2.4.1).

Mechanics I Rotational. There a two blocks, Basic I EMF and Basic I EMF0, which de-
scribe the transformation of electrical energy into rotational mechanical energy (cf. sec. 2.4.3)

Mechanics I Translational. There a two blocks, Basic I TranslationalEMF and
Basic I TranslationalEMF0, which describe the transformation of electrical energy into trans-
lational mechanical energy (cf. sec. 2.4.3).

Thermal I HeatTransfer. The block Basic I HeatingResistor provides a model of a tem-
perature dependent resistor and hereby a connection to the domain of thermal heat transfer (cf. sec.
2.4.4).

Example: DC Motor driven by PWM 1-Quadrant controller

Fig. 2.10 shows a model of simple DC motor, which is driven by a PWM 1-quadrant converter. The
very basic electrical component of a DC motor is the electrical anchor coil (Resistor and Inductor
in series). The relation between the electrical current (flowing through the coil) and the mechanical
torque exerted at the motor shaft is modeled by the electric/mechanic transformer block EMF0. This
block is a link between the electrical and rotational mechanics domain, i.e. the right port of EMF0
resembles the motor shaft propagating mechanical quantities (angle and torque). There is a constant
supply voltage Uconst=12. It is controlled by a 1-quadrant controller, consisting of a Diode and an
IdealClosingSwitch. The switch is triggered by a PWM signal (cf. example sec. 2.4.1). In reality
the IdealClosingSwitch would be a semiconductor switch (e.g. a MOSFET).

For testing purposes, we generate a PWM signal whose duty cycle rises within 0.015s from 0% to
100% (PWM Duty Cycle) and we “measure” the exerted torque at the motor shaft using two blocks
(TorqueSensor and Fixed) from the Mechanics I Rotational palette (cf. sec. 2.4.3).

Please note, we do not care about mechanical inertia of the rotor, because right now everything me-
chanical is kept fixed. We will have a look at the mechanical part of the motor later, in sec. 2.4.3.

Fig. 2.11 shows the simulation result of our simple test. The ramp of the increasing duty cycle (black
curve), the corresponding PWM signal (green curve), which closes the switch (IdealClosingSwitch)

solidThinking
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Figure 2.10: DC Motor driven by PWM Controller (DCMotorWithoutInertia)

Figure 2.11: Duty Cycle, PWM Signal, and Torque (DCMotorWithoutInertia)
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when positive, and the exerted mechanical torque (red curve) at the motor shaft. The torque exhibits rip-
ple, due to the discontinuous excitation by the PWM signal. The torque ripple in our model is increased
when the frequency of the PWM signal is reduced and vice versa.

2.4.3 Mechanics

The Mechanics palette contains components to model 1-dimensional (rotational and translational)
and 2-dimensional (planar) mechanical systems. It is organized in three sub-palettes namely Rotational,
Translational, and Planar. They are described in the following.

Rotational

The Rotational palette contains components to model 1-dimensional rotational mechanical sys-
tems. Different types of gearboxes, shafts with inertia, external torques, spring/damper elements, fric-
tional and backlash elements, sensors to measure angle, angular velocity, angular acceleration and the
cut-torque of a flange are included. It resembles a subset of the Modelica.Mechanics.Rotational
package of the MSL. Almost all blocks of this palette are equivalent or very similar to their counterparts
found in the MSL.

The direction of a rotation is indicated by the sign of a corresponding variable. How to interpret the sign
of such a variable is described in the MSL1.

Unique to COSELICA

The following blocks do not originate from the MSL:

• Components I Free

• Components I Freewheel

• Components I IdealDifferential

Unconnected ports (propagating physical quantities) are not allowed. Unconnected ports can be
avoided by connecting them to Components I Free.

Links to other Domains

Blocks (Real Signals). Some blocks of the Sources palette (e.g. Position, Speed, Acceleration,
Torque, . . .), all blocks of the Sensors palette, and some of the Components palette (Brake,
Clutch, OneWayClutch) provide connections to the domain of real signals (cf. sec. 2.4.1).

Mechanics I Translational. The block Components I IdealGearR2T describes the transfor-
mation of rotational motion into translational motion and provides therefore a connection to the transla-
tional mechanics domain (cf. sec. 2.4.3).

1Modelica.Mechanics.Rotational.UsersGuide.SignConventions
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Figure 2.12: DC Motor with Speed Reducing Gear (DCMotor)

Example: DC Motor with Speed Reducing Gear

We have enhanced the model of fig. 2.10 in order to build a physical multi-domain (electrical/mechanical)
model of a DC motor with a speed reducing gear as shown in fig. 2.12. The rotor of the DC motor is
modeled by its Inertia and we take losses, due to bearing friction (Damper), into account. The
friction is modeled here simply as viscous damping. However, it would be possible to use other friction
models (such as Coulomb and Stribeck) by means of the block BearingFriction.

Attached to the rotor shaft is a speed reducing gear with ratio 10 (IdealGear). We take the gear
Inertia and losses (again simply a viscous Damper), as seen from the gear input shaft, into account.
We do not consider any backlash of the gear, but we could do so by using ElastoBacklash. Finally,
we have a mechanical SpeedSensor and acceleration sensor (AccSensor) connected to the output
shaft of the gear and we are interested in the electrical current drawn by the motor (CurrentSensor).

Running a simulation of the model reveals the startup behaviour of our unloaded DC motor as show
in fig. 2.13. The output shaft of the gear reaches a rotational speed (black curve) of nearly 1 rpm
in steady state. The corresponding acceleration (green curve) exhibits ripple during the PWM startup
ramp, which is not surprising (cf. sec. 2.4.2; fig. 2.11). Furthermore, one can observe that the DC
motor draws an electrical current (red curve) of nearly 12 in steady state.

Please note, that this DC motor model could actually be used to drive a mechanical system of choice
just by connecting the system to be driven to the output shaft (right port) of the IdealGear block.

Translational

The Translational palette contains components to model 1-dimensional translational mechanical
systems (sliding mass , mass with friction, spring, damper, and others).

It resembles a subset of the Modelica.Mechanics.Translational package of the MSL. Almost
all blocks of this palette are equivalent or very similar to their counterparts found in the MSL.

The direction of a translation is indicated by the sign of a corresponding variable. How to interpret the
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Figure 2.13: Speed, Acceleration, and Current (DCMotor)

sign of such a variable is described in the MSL2.

Unique to COSELICA

The following blocks do not originate from the MSL:

• Components I Free

• Components I MassWithWeight

• Components I Pulley and Components I ActuatedPulley

• Components I Lever

Unconnected ports (propagating physical quantities) are not allowed. Unconnected ports can be
avoided by connecting them to Components I Free.

Links to other Domains

Blocks (Real Signals). Some blocks of the Sources palette (e.g. Position, Speed, Acceleration,
Torque, . . .) and all blocks of the Sensors palette provide connections to the domain of real signals
(cf. sec. 2.4.1).

2Modelica.Mechanics.Translational.Examples.SignConvention
Modelica.Mechanics.Translational.Examples.WhyArrows
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Figure 2.14: Spool Design using only one Spring for Preload (Source: MSL)

Mechanics I Rotational. The block Rotational I Components I IdealGearR2T is not
part of the Translational palette, but nevertheless provides a link between the translational and
the rotational mechanics domain (cf. sec. 2.4.3).

Example: Preload of a Spool

Please note, that this example has been taken from the MSL3. It was slightly modified and rebuilt for
COSELICA.

In force actuated hydraulic valves it is often necessary to hold the spool in a predefined (resting) position
as long as the operating force is below a threshold value. If the force exceeds the threshold value a
linear relation between force and position is desired. Some designs use only one mechanical spring to
accomplish this behaviour. Relevant details of such a design are shown in fig. 2.14. At rest, the two
spring plates are in contact with the spool and the housing. When the spool has moved, this is not true
any more. One spring plate is still in contact to the other parts as before, but the other is not. There is
one gap between this spring plate and the housing and another gap between the spring plate and the
spool. This can happen at four places and depends on the direction of movement of the spool (cf. fig.
2.14).

The possible interchange of contact and gap (OuterContactB, OuterContactB,
InnerContactA, InnerContactB) can be modeled with the ElastoGap block as shown in fig.
2.15. We are interested in the relation between actuation force and spool position. Thus, we are ac-
tuating the spool with a slowly (freqHz=0.01) varying Sine (Operation Force) and measuring
the corresponding Position of the spool.

Simulation of the model yields the characteristic relation between force and position of the preloaded
spool as shown in fig. 2.17. The characteristic looks expedient and exhibits a barely visible hysteresis
behaviour. The existence of hysteresis might be surprising, but there is a high viscous friction present
(see Damper).

3Modelica.Mechanics.Translational.Examples.PreLoad
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Figure 2.15: Model for Preload of a Spool (SpoolPreLoad)

Figure 2.16: Spool Position vs. Operating Force at 0.01Hz (SpoolPreLoad)
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Figure 2.17: Spool Position vs. Operating Force at 0.1Hz (SpoolPreLoad)

So far, we have simulated the almost static behaviour of the system, by using a quite slowly varying sine
wave actuation force. Furthermore, our model is truly suitable for an examination of system dynamics as
well, because it takes relevant mechanical inertia (masses of spool and spring plates) into account. We
might be interested now in the spool characteristic for a more quickly varying actuation force. Simulation
with a frequency (parameter freqHz=0.1) ten times higher than before yields the characteristic as
shown in fig. 2.17. It exhibits a clearly visible hysteresis behaviour.

Planar

The blocks of the Planar palette are used for modeling of rigid multi-body systems. This palette
seems to be very similar to the Modelica.Mechanics.Multibody package of the MSL, due to
its graphical appearance and user-visible structure. But in comparison to the MSL, it is based on a
significantly differing implementation. The major differences are:

• restriction to 2-dimensional planar problems (2 translational, 1 rotational degree of freedom)

• special joint blocks have to be used in kinematic loops (see LoopJoints palette)

• connector ports propagate additionally velocities and accelerations
(not user-visible)

Links to other Domains

Blocks (Real Signals). Some blocks of the Forces palette (WorldForce, WorldTorque, FrameForce)
and all blocks of the Sensors palette provide connections to the domain of real signals (cf. sec. 2.4.1).
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Mechanics I Rotational. All actuated revolute joints (Joints I ActuatedRevolute and LoopJoints
I ActuatedRevolute) and the ActuatedRollingWheel block support connections to the rota-
tional mechanics domain (cf. sec. 2.4.3).

Mechanics I Translational. Some blocks of the Forces palette (LineForce and
LineForceWithMass) and all actuated prismatic joints (Joints I ActuatedPrismatic and
LoopJoints I ActuatedPrismatic) support connections to the domain of translational me-
chanics (cf. sec. 2.4.3).

Usage of World and Fixed

Each interconnected network of components has to incorporate either exactly one World block and an
arbitrary number of Fixed blocks or at least one Fixed block.

A Fixed block (with parameter r=[0,0]) instead of a World block may be used for systems without
gravity.

Fixed blocks can be used to close kinematic loops, but this is not mandatory.

Kinematic Chains and Loops

It is possible to model kinematic chains and loops as well. For kinematic chains all prismatic and
revolute joints have to be taken from palette Joints. However, every kinematic loop has to incorporate
exactly three joints from the palette LoopJoints (see example below).

Usage of Sensors

In the planar mechanics domain we have 1 rotational and 2 translational degrees of freedom. Thus,
some physical quantities are scalar (e.g. orientation angle, torque, . . .) and others are vectors of length
2 (e.g. position, force, . . .). All sensors with round shape provide a scalar output and all sensors with
rectangular shape provide a vector output. The blocks of the Blocks I Routing and the Blocks
I Math I Vectors palettes are useful for processing the latter vector outputs.

The vector output of a sensor is basically resolved in the world frame (r=[0,0] with zero orientation
angle). However, there are a number of sensors with an additional port marked “resolve”. Here, vector
output is resolved in the “resolve” frame, i.e. in the frame that is connected to this additional port. Please
note, that connections to “resolve” ports have no impact whatsoever on the mechanical properties of a
system.

Example: Scotch Yoke Mechanism

The Scotch Yoke, depicted in fig. 2.18, is a well-known and simple planar mechanism for converting
rotational motion into reciprocating translational motion and vice versa. A pin (dark red) is connected
to a rotating part (light red). The pin is located in the slot of the yoke (light blue). The yoke is supported
by bushings (dark blue) and allowed to travel horizontally back and forth driven by the rotating part.
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Figure 2.18: Scotch Yoke Mechanism

Figure 2.19: Model of Scotch Yoke Mechanism (ScotchYoke)
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Figure 2.20: Simulated Pin Position of Scotch Yoke Mechanism (ScotchYoke)

A model of the Scotch Yoke is shown in fig. 2.19. Backlash and friction are neglected for the sake of
simplicity. The effective radius R is assumed to be constant. Acceleration due to gravity is taken into
account (World). An initial yoke position s=R=1 was presumed for the assembly of the model. The
rotating part (BodyShape) bears mass and inertia, where the center of mass does not necessarily
coincide with the center of rotation (ActuatedRevolute). The rotating part is driven by a constant
Torque. The link between pin and yoke is modeled by a Revolute (connected to BodyShape) and
a Prismatic joint in series. Finally, the motion of the yoke (PointMass) is restricted by another
Prismatic joint which is connected to a Fixed frame, allowing the yoke to move horizontally only.
The Fixed block closes a kinematic loop of four joints in series. As a general rule, one has to use
exactly three LoopJoints (orange) in a kinematic loop.

The Position of the pin is “measured” and plotted as shown in fig. 2.20. The position vector is split
into scalar values (DeMultplex2), i.e. x- (black curve) and y-coordinate (green curve). As indicated
by the curves in fig. 2.20, the mechanism is traveling faster and faster with increasing time, this is due
to our lossless modeling.

The model could be used for kinetostatic analysis of the mechanism as well. For this purpose, one
would replace the Torque source by a Position, Speed or Acceleration source and add ap-
propriate sensors (e.g. CutForce or CutTorque) in order to “measure” forces and torques of interest.

Furthermore, the mechanism could be driven by a more realistic source, e.g. by a electrical DC motor
(cf. sec. 2.4.2).
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2.4.4 Thermal I HeatTransfer

The HeatTransfer palette contains components to model 1-dimensional heat transfer with lumped
elements. It resembles a subset of the Modelica.Thermal.HeatTransfer package of the MSL.
All blocks of this palette are equivalent or very similar to their counterparts found in the MSL.

Links to other Domains

Blocks (Real Signals). The block Components I Convection, some blocks of the
Sources palette (PrescribedTemperature and PrescribedHeatFlow), all blocks of the Sensors
palette, and some blocks of the Celsius palette (ToKelvin, FromKelvin,
PrescribedTemperature, TemperatureSensor) provide connections to the domain of real sig-
nals (cf. sec. 2.4.1).

Electrical I Analog. The block Electrical I Analog I Basic I HeatingResistor is
not part of the HeatTransfer palette, but nevertheless provides a link between the thermal heat
transfer and the electrical domain (cf. sec. 2.4.2).

Example: Insulated Steel Rod

How evolves the temperature at different locations on an insulated steel rod (initial temperature 20°C,
length L, cross section area A, density ρ, specific heat capacity c, heat conductivity λ), when one of its
ends gets connected to a heat source of higher temperature? The simulation of the model, shown in
fig. 2.21, will give an answer to that question. The rod is modeled by three lumped HeatCapacitor
blocks connected to their neighbors and the rod ends by ThermalConductor blocks. Please note,
this model is just an approximation. However, its accuracy might be increased by using a higher num-
ber of lumped elements. For our purposes, we may expect to get reasonable approximations for the
temperature at locations L

6 ,3L6 , and 5L
6 on the rod.

Apart from the left rod end, perfect insulation is assumed. Thus, the right end is connected to a
PrescribedHeatFlow of zero. The left end is not insulated and connected to something with a
higher (200°C) temperature. Expressed more formally, we have here a boundary condition for the
temperature at the left end, i.e. we have a PrescribedTemperature of 200°C at this location.

We are “measuring” the temperature at different locations (right end, L6 ,3L6 , and 5L
6 ) using TemperaturSensor

blocks. Additionally, we are interested in the amount of energy which is transferred to the rod via its left
end. We determine this amount of energy by using a HeatFlowSensor, whose output is integrated
(Integrator) and scaled (by factor 1e-4; just for nicer result plot).

Now, lets have a look at the simulation results shown in fig. 2.22. In the top diagram there are plots of
the temperature at the left rod end (yellow curve) and at locations L

6 (red curve), 3L
6 (green curve), and

5L
6 (black curve) on the rod. Locations closer to the left end are heated up faster than others. In steady

state, all will have the same temperature of 200°C. This could be verified by a prolonged simulation
period. In the bottom diagram, we have the heat flow (blue curve), i.e. the power which is transmitted
to the rod at every instant of time, and the additional accumulated energy (green curve) in the rod due
to its heating-up. At the end of the simulation period this energy amounts to approx. 24.3×104 (J).
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Figure 2.21: Insulated Steel Rod (SteelRod)

Figure 2.22: Temperatures, Power and Energy (SteelRod)
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In this example, we have adequately modeled the heat transfer by thermal conductance. However,
models incorporating heat transfer mechanisms like radiation and convection might be needed. In such
cases, the blocks BodyRadiation and Convection can be used.
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Chapter 3

Coselica Use Case 1 - Dynamic
Extraction of a Pile

3.1 Scenario and Problem

A 23m long pile has been inserted 20m into the ground and shall be extracted by means of a static
force S and a dynamic (harmonic oscillating) force V (cf. fig. 3.1). In order to achieve this, one has
to overcome the shaft resistance force R of the pile. It is actually distributed over the whole shaft area
which is in contact with the soil and depends on the relative movement of the shaft with respect to the
soil, soil properties, and the pile geometry (size of shaft area).

In comparison to purely static extraction (V = 0) the use of a vibrator is advantageous, because the
static force S needed here is usually significantly smaller. However, this implies the a priori choice of
an appropriate vibrator.

3.1.1 Pile and Soil Properties

All relevant pile properties are given in tab. 3.1. Soil properties along the inserted length of the pile are
known in terms of CPTParameters for a shaft resistance model (cf. sec. 3.2.1) have been derived based
on these test results. Sometimes soil properties might be rather unknown and reasonable assumptions
have to be made by geotechnical skilled persons.

Total Length L 23 m
Inserted Length 20 m

Young’s Modulus E 2.1× 1011 N
m2

Density ρ 7850 kg
m3

Cross Section Area A 232× 10−4 m2

Circumference 3.1 m

Table 3.1: Pile Properties
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Figure 3.1: Dynamic Extraction of a Pile

Model Me [kgm] f [Hz] md [kg]
2310 VM 10 38.33 1450
2319 VM 19 38.33 2450
24 VM 24 38.33 4150
28 VM 28 38.33 3900
50 VM 50 33.33 4750

Table 3.2: Available Vibrators

3.1.2 Vibratory Pile Drivers

Inside a vibrator ex-centric counter-rotating masses are generating a vertical harmonic oscillating force

V =Meω
2 =Me(2πf)

2. (3.1)

Where Me is the ex-centric moment and f is the rotation frequency of the vibrator. Another important
parameter is the dynamic (oscillating) mass md. We are looking for an appropriate vibrator from tab.
3.2.

3.1.3 Open Questions

In practice, one is interested in cost-efficient solutions and thus it is of high interest to know a priori :

• What is the smallest1 vibrator, which is suitable for the job?

Furthermore, there is a kind of a mystic aura around vibratory pile driving and extraction. Even among
civil engineering practitioners and experts there are continuing discussions regarding:

• Does the elasticity of the pile matter?

1with respect to the ex-centric moment Me

solidThinking

Proprietary Information of Proprietary Information of solidThinking Inc.

solidThinking Activate 32



Figure 3.2: Shaft Resistance of Pile (ShaftResistance)

3.2 Modeling and Simulation

We are modeling and simulating the shaft resistance of the pile and the extraction process, assuming
either a rigid or an elastic pile. For the sake of simplicity, we are taking gravity not into account and we
are only interested, whether the fully (20m) inserted pile can be moved, thus we are not modeling the
whole extraction process. It is pretty obvious, the ability to move the fully (20m) inserted pile allows the
inference, that also every partial (<20m) inserted pile can be moved.

In a first step, we are investigating purely static pulling of the pile (cf. sec 3.2.2) in order to test our shaft
resistance model (cf. sec. 3.2.1). Furthermore, this reveals the size of the static force S needed for
extraction, albeit this is known beforehand.

In second step, we are investigating dynamic pulling of the pile (cf. sec. 3.2.3). We will see, whether
we can pull the pile using one of the vibrators of tab. 3.2, assuming there is only a rather small static
force S = 105N available.

Please note, in the following we have adopted in every model the same sign convention: a movement
upwards is taken into account with negative sign. Furthermore, all movements are modeled as relative
movements with respect to the position of the (initially) fully inserted pile. This implies that pulling
(upwards) forces have negative sign.

3.2.1 Shaft Resistance of Pile

The shaft resistance R of the pile (cf. fig. 3.1) can be split into two parts: a friction force M and a
viscous damping force D. In the following, we describe and use a simplified model, which has been
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Elastic Pile
Parameter Rigid Pile Head Center Foot
Dmax [

Ns
m ] 8.1× 103 0.5× 103 5.1× 103 2.5× 103

Mmax [N] 4.1× 106 0.01× 106 2.59× 106 1.50× 106

Table 3.3: Shaft Resistance Model Parameters (for Rigid & Elastic Pile)

Figure 3.3: Testing of ShaftResistance super block (ShaftResistance2)

derived from literature2.

The friction force M depends on the displacement of the pile after a reversal of motion and is given by

dM(t)

dt
= αż (Mmax − sign(ż)M(t)) . (3.2)

For sufficiently large displacements, a maximum friction force Mmax will be mobilized. The parameters
of eq. 3.2 are α (we will use a constant value of 1500) and Mmax.

The viscous damping force D depends on the grade of mobilization of the friction force M and is given
by

D(t) = Dmaxżmin

(
1, 1− sign(ż)

M(t)

Mmax

)
. (3.3)

Initially, after a reversal of the pile motion we have an effective maximum damping constant Dmax.
After a short period the mobilization of the friction force takes place and the effective damping constant
becomes less than Dmax and may be later for a full mobilization of friction (|M | ≈ Mmax) there will be
no viscous damping at all. The parameters of eq. 3.3 are Mmax and Dmax.

For the described shaft resistance model we need to know the parameters Mmax and Dmax. They are
depending on the soil properties (cf. sec. 3.1.1). Explicit values for them are given in tab. 3.3, they are
used later for modeling the shaft resistance of a rigid and an elastic pile (cf. sec. 3.2.2 and sec. 3.2.3).
The very details of their derivation are not within the scope of this document.

The above described model, i.e. eqs. 3.2 & 3.3, has been implemented as shown in fig. 3.2 as a super
block. Herein, the parameters Mmax and Dmax have to be provided via the implicit input ports Mmax
and Dmax. Port z is a translational mechanical flange, on which the shaft resistance Force (i.e. the

2GUILLERMO DIERSSEN: Ein bodenmechanisches Modell zur Beschreibung des Vibrationsrammens in körnigen Böden,
Dissertation, University of Karlsruhe, Germany, 1994.
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Figure 3.4: Shaft Resistance Force vs. Pile Movement (ShaftResistance2)

forceR =M+D) is acting. It will later be connected with the pile, thus the SpeedSensor is measuring
the speed ż of the pile. Based on this measurement we are calculating M and D, according to eqs. 3.2
& 3.3, and exert a resistance ForceM +D on the pile (via port z).

The right-hand sides of eqs. 3.2 & 3.3 are implemented rather straightforward using a number of simple
mathematical blocks (e.g. Add, Product, Division, Sign, . . .). Eq. 3.2 is an ODE, thus we have
to integrate its right-hand side via an Integrator block in order to get M . For convenience, we have
embedded here the factor α (=1500) by choosing an integrator gain k=1500. In contrast, Eq. 3.3 is just
an algebraic equation with respect to ż and M . Please note, that Add blocks take two parameters k1
and k2, and can be used to calculate arbitrary linear combinations k1u1 + k2u2 of their inputs u1 and
u2.

The output ports M and D are not crucial, but might be handy for illustrating and testing purposes as
shown fig. 3.3. For our test we are using just some simple parameter values (Mmax=1 and Dmax=8)
for the shaft resistance and we are prescribing a oscillating pile Movement (+-2mm). A Sine block
generates a sinusoidal signal with frequency 40Hz, an amplitude of 0.002 (2mm) and a phase of π

2 .
Because of the phase π

2 this signal is actually a cosine signal, thus our prescribed movement will start
at position +2mm. Finally, this signal can be used to prescribe the position s_ref (via a Position0
block) of a translational mechanical flange, i.e. the position of the pile. For two movement cycles, the
shaft resistance force M +D versus the pile position z, is shown in fig. 3.4. The plot exhibits, that our
shaft resistance model works as expected.

3.2.2 Static Pulling

We are exerting a slowly increasing (quasi-static) Pulling Force on the pile and measuring the pile
movement. We expect, that the pile should start moving when this force becomes ≥ Mmax (cf. tab.
3.3). Corresponding models and results for a rigid and an elastic pile are described in the following.
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Figure 3.5: Static Pulling of a Rigid Pile (StaticPullingRigidPile)

Figure 3.6: Simulation Results (StaticPullingRigidPile)

Rigid Pile

The Pile is modeled here as rigid body with mass mp (via a Mass block) as shown in fig. 3.5. There
are two forces acting on the pile: the Pulling Force 0...4.2MN and the Shaft Resistance
(cf. sec. 3.2.1). The Pulling Force 0...4.2MN signal is generated by a Ramp block (parameters
height=-4.2e6, duration=60) and prescribed as force acting on a mechanical flange via a Force0
block.

The maximum friction force Mmax = 4.1× 106N and the maximum damping force Dmax = 8.1× 103N
(cf. tab. 3.3) are provided by two Constant blocks. Furthermore, we are measuring the force f acting
on the Pile and its position s.

Simulation results, i.e. pulling force versus pile movement (upwards direction is negative), are shown
in fig. 3.6. As expected, a significant upwards movement of the pile happens when the pulling force
becomes ≥Mmax.
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Figure 3.7: Static Pulling of an Elastic Pile (StaticPullingElasticPile)

Elastic Pile

The pile is modeled here approximately as elastic body by three lumped masses mp/4, mp/2, and
mp/4 (Head, Center, and Foot). They resemble three pile elements of length L

4 ,L2 , and L
4 and are

connect via springs as shown in fig. 3.7. A different Shaft Resistance is acting on each of them.
The right flange of the Foot (very lower end of the pile; tip of the pile) is connected to a Free block,
because we are assuming there is no interaction between pile tip and soil.

The needed parameters Dmax and Mmax for each pile element (Head, Center, and Foot) are given
in tab. 3.3. The elasticity AE

L of the pile is modeled by the two springs in series, where each of them
has a spring constant 2EAL . The relative movement of each pile element (Head, Center, and Foot)
is measured.

Please note, that all component lengths (parameter L of all Mass blocks and parameter s_rel0 of all
Spring blocks) are set to zero, this is just fine, because, within the scope of this use case, we are only
interested in relative positions of the pile elements with respect to their initial positions (for convenience
set to zero as well).

Simulation results, i.e. pulling force versus pile movements (Head, Center, and Foot), are shown
in fig. 3.8. As expected, a significant upwards movement of the whole pile happens when the pulling
force becomes ≥ Mmax,Head +Mmax,Center +Mmax,Foot = 4.1 × 106. Smaller pulling forces are just
stretching but not significantly moving the pile as a whole.

3.2.3 Dynamic Pulling

We are replacing the quasi-static, really high, Pulling Force 0...4.2MN in the models of the
previous section (cf. fig. 3.5 and fig. 3.7) by a rather small Static Force (105N are available) and
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Figure 3.8: Simulation Results (StaticPullingElasticPile)

Figure 3.9: Dynamic Pulling of a Rigid Pile (DynamicPullingRigidPile)

a Dynamic Force, which is physically generated inside a Vibrator of mass md (cf. sec. 3.1.2) as
shown in fig. 3.9 and fig. 3.10. The Vibrator is rigidly connected (in the real world using hydraulic
clamps) to the Pile head. The Dynamic Force in the models is prescribed using a Sine block with
parameters amplitude=V and freqHz=f (cf. eq. 3.1 and tab. 3.2). Please note, that the modeling
of the rigid and the elastic pile remains the very same as before in sec. 3.2.2.

We are running a simulation for each of the available vibrators (cf. tab. 3.2) for a small period of time
(2 seconds). If the pile moves significantly within this simulation period, then the corresponding vibrator
might be regarded as suitable for the pile extraction job. Please note, that we use here a much smaller
static pulling force of just 105N in comparison to 4.1×106N in the above case of purely static pulling (cf.
sec. 3.2.2). Thus, an appropriate vibrator would made it possible to pull the pile using a pulling force of
just 105N (apart from the gravity forces due to md and mp).

Simulation results for dynamic pulling of a rigid and an elastic pile are described in the following.

Rigid Pile

The Pile is modeled as rigid body and connected to the Vibrator which generates a Dynamic
Force as shown in fig. 3.9.
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Figure 3.10: Dynamic Pulling of an Elastic Pile (DynamicPullingElasticPile)

Simulation results, i.e. pile movement versus time, for each available vibrator (cf. tab. 3.2) are shown
in fig. 3.11. It seems, that none of the vibrators is capable to make the pile move significantly, not even
the biggest one (50 VM).

These results are clearly unexpected and in contradiction to our experiences from practice! But, they
are giving us a strong motivation for treating the pile as a somehow elastic body.

Elastic Pile

The pile is modeled as elastic body and the relative pile movement is measured at three locations
(Head, Center, and Foot) as shown in 3.10. Due to the oscillating Dynamic Force the pile as a
whole will experience stretch and compression at the same time, i.e. the relative movements of Head,
Center, and Foot are in general differing.

Simulation results, i.e. the movements of the pile head (red), center (green), and foot (blue) versus
time, for each available vibrator (cf. tab. 3.2) are shown in fig. 3.12. The pile as a whole is not moving
significantly using the vibrators 2310 VM and 2319 VM (cf. fig. 3.12a and 3.12b). But with the bigger
machines 24 VM, 28 VM, and 50 VM the pile as a whole is moving significantly upwards (cf. fig. 3.12c,
3.12d, and fig. 3.12e). So what is the difference between success and failure? A close look reveals,
that the 2310 VM and 2319 VM are not powerful enough to make the pile foot oscillating, such that
the averaged (over time) friction force becomes small, whereas the others make the pile foot clearly
oscillating. All in all, in practice a good (cost-efficient) choice for the pile extraction job seems to be the
24 VM!
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3.3 Major Results

Based on the above carried out simulation study, we can summarize the following results:

• Vibrator 24 VM seems to be a good choice for the described pile extraction job.

• If a vibrator is used for pile extraction, then pile elasticity does matter. This result is twofold:

– If pile elasticity is present, then it should be taken into account.

– It easier to pull an elastic pile than a rigid pile.
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(a) Vibrator 2310 VM (b) Vibrator 2319 VM

(c) Vibrator 24 VM (d) Vibrator 28 VM

(e) Vibrator 50 VM

Figure 3.11: Simulation Results (DynamicPullingRigidPile)
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(a) Vibrator 2310 VM (b) Vibrator 2319 VM

(c) Vibrator 24 VM (d) Vibrator 28 VM

(e) Vibrator 50 VM

Figure 3.12: Simulation Results (DynamicPullingElasticPile)
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Chapter 4

Coselica Use Case 2 - Controlled
Heating-Up of a Small Reflow Oven

4.1 Scenario and Problem

Surface mounted devices1 (SMDs) have to be mounted on the surface of printed circuit boards (PCBs)
as shown on the titlepage. This can be done by reflow soldering2, where the electronic components are
placed on the contact pads, coated with solder paste, of a PCB. This assembly is heated-up in a reflow
oven, such that the solder is melting and thus creating permanent electrical connections. The heating-
up process should follow a prescribed temperature profile in order to avoid damaging the electronical
components.

4.1.1 Reflow Soldering (Temperature) Profile

Figure 4.1: Recommended Soldering Profile (Source: Datasheet ADXL78)

1http://en.wikipedia.org/wiki/Surface-mount_technology
2http://en.wikipedia.org/wiki/Reflow_soldering
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Table 4.1: Recommended Soldering Profile (Source: Datasheet ADXL78)

Manufacturers of electronic components are recommending soldering profiles to be used when mount-
ing their components. A typical example is depicted in fig. 4.1. The peak temperature Tp is reached
after three consecutive phases: heating up to PREHEAT, PREHEAT, and RAMP-UP. The peak temper-
ature has to be reached in a way, such that certain boundary conditions, given in tab. 4.1, are fulfilled.
Please note, we intend soldering PCBs compliant to the RoHS3, thus only the Pb-Free case is of
interest for us. The cooling-down phase is much less critical (cf. bottom of tab. 4.1) and not subject of
this use case.

4.1.2 Open Questions

A small electrical oven (AC 230V@50Hz, Power 1500W) shall be used for reflow soldering of PCBs.
In order to avoid time-consuming and costly blackbox experiments, we would like to investigate by
simulation the following:

• Is it feasible to generate a compliant temperature profile, due to the rather limited power of the
oven?

• Can we control the oven using conventional PID control, such that a satisfactory heating-up profile
is generated?

4.2 Modeling and Simulation

We are modeling and simulating an automatic controlled electrical oven. The oven is described by
a physical multi-doman model, i.e. it has an interconnected electrical and thermodynamical part. The
heating-up phase of the oven will be set under automatic control, such that the oven temperature follows
a prescribed temperature profile (reflow soldering profile).

In a first step, we are using a simple relay controller to check, whether the oven is powerful enough to
follow a temperature profile suitable for reflow soldering.

In a second step, we are switching to PID control in order to improve control performance. Having real
application in mind, we are adding an “Anti-Windup” feature and testing the controller with respect to

3http://en.wikipedia.org/wiki/Restriction_of_Hazardous_Substances_Directive
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disturbances like varying ambiant temperature and noisy (temperature) measurements.

4.2.1 Electrical Oven

Figure 4.2: Model of Electrical Oven (Reflow Oven)

The electrical oven is modeled as a super block, whose content is shown in fig. 4.2. Both electrical
and thermodynamical behaviour is modeled. In the electrical domain a heating resistor resembles the
Heating Element of the oven. It is powered by an AC voltage source 220V @ 50Hz and converts
electrical into thermal energy (red port). Thus, it is link between the electrical and the thermodynam-
ical modeling domain. The heating can be switched on and off by means of a Switch, which is
triggered by a real signal (Power). The thermodynamical part of the model considers two lumped
heating capacities Heating Element and Oven and thermal Conductance between them and
the environment (Ambient Temperature). We are measuring the Oven Temperature and the
Heating Element Temperature and providing them via output ports T_Oven and T_Heating.
In this model the heating capcaties of PCBs located inside the oven are considered to be comparatively
small and thus neglected.

So far, we can switch the oven on (0% heating power) and off (100% heating power) only. We intend
to use later a PID controller whose output will prescribe arbitrary values (0%. . .100%) for the heat-
ing power. Thus, we need a PWM Converter as shown in fig. 4.3, which translates a continuous
DutyCycle(%) signal into an On/Off (0/1) signal which can be used to trigger the Switch (cf.
fig. 4.2). The output On/Off is switched from 0 to 1 and vice versa based on a comparison of the
DutyCycle(%) and a Triangular Wave.

A simple test of our oven model is shown in fig. 4.4. Here, we can prescribe an arbitrary constant
Heating Power and observe the corresponding On/Off switching of the heating and the evolution
of the Oven Temperature.
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Figure 4.3: Conversion of Percentage to On/Off-Signal (PWM Converter)

Figure 4.4: Test of Oven Model (ReflowOvenCharacteristics)
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Figure 4.5: Test Results

Simulation results shown in fig. 4.5 meet our expectations. For a heating power of 75% the oven
reaches a final – steady state – temperature of approx. 295◦C (cf. fig. 4.5). The corresponding
switching signal is shown in fig. 4.5 and reveals that within one period the heating is switched on in
75% of the time, which was expected. Please note, that these results (cf. fig. 4.5) might be compared
with data of an experiment carried out with a real oven in order to validate our model.

4.2.2 Simple Relay Control

Figure 4.6: Reflow Oven with Relay Controller (ReflowOvenRelayController)

The oven is now relay controlled as shown in fig. 4.6. We do not need a PWM Converter here, because
the output of the Relay Controller (+-2degC), i.e. a hysteresis block, switches from 0 to 1 and
vice versa, whenever the difference between actual (T_Oven) and desired (Temperature Profile
Reference) temperature exceeds ±2◦C. A time-varying Temperature Profile Reference is
implemented using a lookup block.

We have set up a temperature profile, called A (cf. blue curve in fig. 4.7a), which is compliant to the
reflow soldering recommendations discussed above (cf. sec. 4.1.1). Is the oven powerful enough to
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(a) Temperature Profile A

(b) Temperature Profile B

Figure 4.7: Relay-Controlled Oven Temperature
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generate, at least approximately, that profile? Simulation reveals (cf. red curve in fig. 4.7a), that the
oven is not powerful enough. Beginning at t ≈ 200s the oven temperature is loosing track.

Are we forced to rule out our specific oven at this point? No, we might give it another try, using a more
moderate – but still compliant (cf. sec. 4.1.1) – temperature profile, called B (cf. blue curve in fig. 4.7a).
Simulation exhibits now, that the oven is capable of following the track during the whole heating-up
phase. Thus, the oven seems to be suitable for reflow soldering purposes, as long as we stick to a
temperature profile as shown in fig. 4.7b (blue). We are now moving on to PID control, in order to
decrease the control error (difference between actual and desired temperature).

4.2.3 PID Control

Figure 4.8: Reflow Oven with PID Controller (ReflowOvenControllerPid)

We have replaced the relay controller from above by a PID Controller in series with a PWM
Converter (discussed above; cf. sec4.2.1) as shown in fig. 4.8. The controller takes the error e
as input and gives a continuous output value u, which is interpreted a heating power in % to control the
oven.
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Figure 4.9: PID Controller (PID Controller)

Inside the super block PID Controller the dynamic relation between e and u is implemented (cf.
fig. 4.9). In the LAPLACE domain it can be written as

U(s) = kp(1 +
1

Tis
+

Tds
Td
Nds+ 1

)E(s). (4.1)

Please note, that instead of Tds we are using Tds
Td
Nd

s+1
for the differentiating part of the control law in order

to make the controller realizable, i.e. causal.

The controller parameters kp, Ti, Td and Nd have to be tuned somehow. In this use case this was done
just heuristically and further improvements might be possible. Simulation results of the PID controlled
heating-up of the oven are shown in fig. 4.10. The oven temperature (red) is following our prescribed
temperature profile (blue) reasonably well during the heating-up phase.

Now, lets have a look at the corresponding controller output (cf. fig. 4.10b). It clearly exceeds the
applicable limits 0% and 100% several times, e.g. at times t ≈ 20s, t ≈ 130s, and t ≈ 280s. This
may raise the question: Are our simulation results valid? Yes, they are! Because an implicit limitation to
0%. . .100% is performed within the PWM Converter. Nevertheless, in practise one has to guarantee,
that saturation of the controller output doesn’t persist. Otherwise, there will be no active feedback
anymore and this may render the control loop useless or even worse may provoke instability. In the
following section we are improving our controller with respect to that issue.
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(a) Oven Temperature

(b) Controller Output (Heating Power [%])

Figure 4.10: PID Controlled Oven Temperature
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Anti-Windup

Figure 4.11: PID Controller with Anti-Windup (PID Controller)

We are adding a so-called “Anti-Windup” feature to our PID controller in order to avoid persistent
saturation of the controller output. The improved controller is shown in fig. 4.11. The difference of
limited (u(0..10%)) and unlimited output (u) is amplified (Anti Windup Gain) and additionally
fed into the Integrator. In case of excess, this will automatically drive the output back within its
limits. Please note, that just for observation purposes the controller has now an unlimited and a limited
output.

Figure 4.12: Reflow Oven with PID Anti-Windup Controller
(ReflowOvenControllerPidAntiWindup)

The PID controller with anti-windup (cf. fig. 4.12) was used and simulation results are shown in fig.
4.13. The tracking performance seems to be a bit degraded in comparison to the previous results (cf.
fig. 4.10a), but it is still good enough. However, it is more interesting to look at the limited (blue) and
unlimited (red) controller output shown in fig. 4.13b. The anti-windup feature is working as expected
and its effect is clearly visible in comparison to fig. 4.10b.

At this point we may conclude, that a reasonably well working PID controller was found with respect to its
tracking performance. In the real world the controller most likely has furthermore to cope disturbances
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(a) Oven Temperature

(b) Controller Output (Heating Power [%])

Figure 4.13: PID Anti-Windup Controlled Oven Temperature

53 solidThinking Activate

Proprietary Information of Proprietary Information of solidThinking Inc.

solidThinking



like varying ambient conditions and measurement noise.

Varying Ambient Temperature

(a) Ambient Temperature 0◦C (b) Ambient Temperature 10◦C

(c) Ambient Temperature 20◦C (d) Ambient Temperature 30◦C

Figure 4.14: Oven Temperature at Different Ambient Temperatures

So far, we have assumed a constant Ambient Temperature (cf. fig. 4.2) of 20◦C. We know that it
somehow influences the thermal losses of the oven. Does the oven still perform reasonably well for am-
bient temperatures of 0◦C, 10◦, 20◦C and 30◦C? Simulation results for different ambient temperatures
are shown in fig. 4.14. For 20◦C and 30◦C we get, as expected, satisfying results (cf. fig. 4.14c & d).
For 0◦C and 10◦C, we can clearly see the negative influence of the increased thermal losses induced
by the lower ambient temperature. A possible remedy in these cases could be improving the insulation
of the oven or selecting a more powerful oven. Both aspects will not be pursued further in this use case.

Based on the above, we may assume that our oven is working well for a constant ambient temperature
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Figure 4.15: Reflow Oven with Variable Ambient Temperature (Reflow Oven)

between 15◦C and 25◦C. What happens, when the ambient temperature is not constant any more and
rather fast varying? In order to investigate that, we have enhanced the oven model by an additional input
port T_a (cf. fig. 4.15), which allows the prescription of an arbitrary time-varying ambient temperature.
We use this model in the control loop (cf. fig. 4.16) and prescribe a sinusoidally, rather fast, varying
ambient temperature of 20◦ ± 5◦(Ambient Temperature (+-5degC); cf. fig. 4.16 and 4.17).

Figure 4.17: Ambient Temperature Signal (Ambient Temperature (+-5degC))

Simulation results in fig. 4.18 are indicating, that the controller is able to compensate the disturbance
of a rather fast varying ambient temperature (magenta curve) very well.
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Figure 4.16: Reflow Oven Control with Varying Ambient Temperature
(ReflowOvenControllerPidAntiWindupVaryingAmbiance)

Figure 4.18: Oven Temperature and Ambient Temperature

solidThinking

Proprietary Information of Proprietary Information of solidThinking Inc.

solidThinking Activate 56



Sensor Noise

Figure 4.19: Reflow Oven Control with Sensor Noise
(ReflowOvenControllerPidAntiWindupSensorNoise)

Figure 4.20: Generation of Coloured Sensor Noise

In this section, we will have a look at the impact of measurement noise on the performance of our
control loop. We are assuming that our measurements of the oven temperature (T_Oven) are tainted
with Sensor Noise as shown in fig. 4.19. The noise signal n is generated inside the super block
Sensor Noise by applying a simple filter (Coloured Noise) to a zero-mean, Gaussian White
Noise. This setup generates a coloured noise signal as shown in fig. 4.21.

Simulation reveals, that the introduced sensor noise has no visible impact on the oven temperature (cf.
fig. 4.22a). Thus, the controller is good at compensating the sensor noise. Please note, the noise is
propagated to the controller output, which is clearly visible in fig. 4.22b. But, this is not a problem,
because the oven itself is a second order delay system (low pass) and suppresses the noise very well.

4.3 Major Results

Based on the above carried out simulation study, we can summarize the following results:
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Figure 4.21: Sensor Noise

• It is possible to use a simple, rather power-limited (1500W) electrical oven for reflow soldering
purposes.

• Conventional PID-control is suitable for automatic control of the oven temperature, the controller
is able to

– track compliant reflow soldering profiles adequately

– compensate varying ambient temperatures

– suppress noise introduced by a temperature sensor
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(a) Oven Temperature

(b) Controller Output (Duty Cycle)

Figure 4.22: PID Anti-Windup Controlled Oven Temperature with Sensor Noise
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Chapter 5

Coselica Use Case 3 - Electrically
Actuated Hatch Mechanism

5.1 Scenario and Problem

A

B

C

Open

Closed

xb

xc

Gas Spring
yb

yc

Hatch (Parts 1 & 2)

1

2

Figure 5.1: Hatch Mechanism with Gas Spring

Manual opening and closing of a hatch is usually be eased by a spring. A hatch mechanism with a
spring is shown in fig. 5.1. The hatch (thick solid) – a rigid body with mass and inertia – is hinged to
a fixed position A. Gravity acceleration in negative vertical direction shall be taken into account. The
flanges of a gas spring are connected to a fixed position B (xb, yb) and a position C (xc, yc) located on
the hatch.

The spring serves several purposes, it keeps the hatch in the rest positions Closed and Open (dashed
lines), facilitates manual opening of the hatch, and avoids too hard bumping into the Closed position.
However, this will work only for appropriately chosen positions B and C, and a spring with suitable
parameters (extended length, stroke, force characteristic).
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In this use case, we are especially interested in how to electrically actuate the hatch mechanism for
automatic opening and closing. For this purpose, we will try to use a spindle, driven by a DC motor, to
actuate the spring itself.

5.1.1 Gas Spring

Maßangaben in mm / Änderungen vorbehalten. Dimensions in mm / We reserve the right to make modifications.  Dimensions en mm / Sous réserve de changements
07/11

Figure 5.2: Gas Spring Parameters (Source: http://www.stabilus.com)
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Parameters of some available standard gas springs are given in fig. 5.2. For the sake of simplicity, we
are a priori restricting our choice of an appropriate gas spring as follows. We are taken only springs
with a Stroke A of 180mm into account. In contrast to the data sheet, we are assuming an increased
Extended length B of 505mm instead of 445mm (provides additional space for a future spindle
drive). Furthermore, the Friction-force FR shall be always zero.

5.1.2 DC Motor

We will use a standard DC Motor RE 25 (P/N 339150), whose parameters are given in fig. 5.3.

Figure 5.3: DC Motor Parameters (Source: http://www.maxonmotor.com)

5.1.3 Open Questions

We would like to investigate and answer by modeling and simulation the following questions:

• Where should a gas spring with stroke 180mm and an extended length of 505mm be mounted
(positions B & C)?
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Figure 5.4: Kinematics of Hatch Mechanism (HatchMechanismGeometry)

• Which gas spring with respect to its Force of extension F1 (cf. fig. 5.2) is suitable for a
manual actuated hatch?

• Is it possible open and close the hatch automatically by means of an electrical spindle drive which
changes the force characteristics of the spring?

5.2 Modeling and Simulation

In a first step, we are investigating the kinematics of the mechanism in order to find appropriate mount-
ing positions for the gas spring and the dynamics in order to choose a suitable spring force character-
istic.

In a second step, we are actuating the hatch mechanism for opening and closing it. We are modeling
three different actuation methods:

• Exertion of manual pushes directly to the hatch

• Control of the spring preload

• Usage of an electrical spindle drive to control the spring preload

5.2.1 Gas Spring

We are modeling the hatch mechanism without and with gas spring. Simulations are carried out in order
to find appropriate mounting positions for the spring and to select a suitable spring force characteristic.
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Mounting Positions

We are trying to find appropriate mounting positions B & C (cf. fig. 5.1) for a preselected gas spring
(extended length 505mm, stroke 180mm; cf. sec. 5.1.1). We are assuming, that only yb = yc = 0.04m
are possible. Thus, we are looking for xb=?, such that the spring is fully extended in position Open
(+45◦) and fully compressed in position Closed (−45◦). It is obvious, that xc depends on xb and can
be calculated as

xc = xb + (extended length− stroke) + 0.005m. (5.1)

We have build a model as shown fig. 5.4 to be able to simulate the kinematics for an arbitrary position
xb. Herein, the hatch is modeled by two rigid bodies1 (Hatch Body(1) and Hatch Body(2)).
Hatch Body(1) is a body of length L1=0.6m and its center of mass is at position L1/2 (cf. block
parameters r and r_CM). Hatch Body(1) is a body, whose center of mass located at L2/2 with
respect to its left (only) flange (cf. block parameter r_CM).

The Rotation block between them, performs just a coordinate transformation (translation r=[0,0],
rotation angle=-45◦) and is a matter of convenience2. The hatch is hinged (via an actuated Revolute
Joint A) at the origin of the World Frame. Position of B is specified by a Rotation of the World
Frame and a consecutive Translation to B. Position C is specified by a Translation to C
which starts at the right end of Hatch Body (2). A Position (Prescribe Angle) block is used
to actuate the revolute joint according to a real signal phi_ref. We are prescribing a Hatch Angle
(Closed...Open), varying from −45◦ . . . + 45◦, and measuring the corresponding Length of
Gas Spring, i.e. the distance between B and C.

The spring length versus hatch angle for different values of xb is shown in fig. 5.5. Please note, that
the damping areas of the gas spring(cf. fig. 5.2) are not taken into account, thus the allowable spring
length is 330 . . . 500mm. For xb=0.05m and xb=0.10m, the stroke of the spring would not be fully used
(cf. fig. 5.5a and 5.5b). For xb=0.015m, the hatch could not be fully opened (cf. fig. 5.5c). Finally, a
position xb=0.012m may be regarded as appropriate within the scope of this use case (cf. fig. 5.5d).

We can state here, that we have found appropriate mounting positions for the gas spring.

Force of Extension

We are now trying to select a force characteristic, i.e. a suitable Force of extension (cf. fig. 5.2).
For this purpose, we have changed the model (cf. fig. 5.6) in order to investigate the dynamics of the
mechanism. We are using now an unactuated Revolute Joint A and exerting a LineForce on
the mountings points B & C, which resembles the spring force.

The Gas Spring (super block) itself is modeled in the translational mechanics domain as show in fig.
5.7. A Spring is Preloaded with the Force of extension F1. The spring constant

c =
F1(x− 1)

A− 0.01m

is calculated according to the parameters given in fig. 5.2. Furthermore, we are assuming that the
Spring bears viscous damping (we use d = 1000Ns

m ). The stroke is restricted to stay within the
Closed Position and the Open Position. In case of excess highly stiff and viscous Damping

1This assembly might be replaced by just one body block, if center of mass and inertia of the hatch as a whole is known
2The vector r_CM to the center of mass of Hatch Body(2) is easily specified in the rotated frame
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(a) Position xb =0.05m (b) Position xb =0.10m

(c) Position xb =0.15m (d) Position xb =0.12m

Figure 5.5: Spring Length versus Hatch Angle

Areas will be activated (by means of ElastoGap blocks with parameters c=5e7N/m and d=1e6Ns/m).
The spring Force and Length are provided as real signals for testing and plotting purposes.

We are simulating the hatch mechanism starting with an initial hatch angle 0◦ (cf. parameters initType
and phi_start of Revolute Joint A block), i.e. the hatch is half-open at t=0.

Simulation shall reveal the smallest Force of extension F1, which will drive the hatch autonomously
into the Open (+45◦) position and keep it there. Results for different F1 are shown in fig. 5.8. A spring
with F1 = 400N is not capable to open the hatch (cf. fig. 5.8a). However, a spring with F1 = 500N is
strong enough to open the hatch and keep it open (cf. fig. 5.8b).

In summary, we have found an appropriate gas spring, which seems to be suitable to facilitate opening
and closing of our hatch mechanism.

5.2.2 Actuated Hatch

The different methods of hatch actuation are modeled and investigated.
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Figure 5.6: Hatch Mechanism with Gas Spring (HatchMechanismGasSpring)

Manually

We are testing our hatch mechanism with respect to its manual actuation and use the model shown
in fig. 5.9. The hatch shall be driven from Closed to Open position and vice versa by a vertical
push (Operating Force), which is applied to the very right rim of the hatch (right flange of Hatch
Body (2)). The prescribed Operating Force (a WorldForce block) is resolved in the world
frame. Thus, there is no, i.e. a zero, Horizontal force component and the Vertical push signal is
generated by a Trapezoid block.

Simulation results, i.e. operating force and hatch angle, for opening the hatch are shown in fig. 5.10. A
trapezoid shaped push force (blue) of different heights, 30N, 35N, and 40N (cf. parameter amplitude
of Vertical block), is applied to the hatch and the hatch angle angle (red) was recorded. In case of
30N, there is no visible movement of the hatch (cf. fig. 5.10a). Pushing a bit stronger, with 35N, reveals
that the hatch is opening a little, but traveling back to its Closed position. Pushing stronger, now with
40N, is strong enough to open the hatch fully (cf. fig. 5.10c). Please note, that at the end of the push
(t = 1s) the hatch has not yet reached the Open position, but it is moving on autonomously.

Now, lets look a corresponding results for manual closing of the hatch. Please note, that our push period
is here longer (2s) than before (1s; cf. parameters rising, width, and falling of Vertical
block) and we have used 10N, 20N, and 30N downward (negative) pushes. Using 10N, we are not
pushing strong enough, the hatch remains in Open position (cf. fig. 5.11a). With 20N, the hatch is
traveling quite a bit towards the Closed position, but a the end of the push (2s) it starts moving back
to the Open position (cf. fig. 5.11b). Finally, with 30N, the hatch travels to the fully Closed position
and remains there (cf. fig. 5.11c).

We can resume, that our hatch mechanism works well and facilitates manual opening and closing of
the hatch.
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Figure 5.7: Model of Gas Spring (super block Gas Spring)

Spindle Driven

We modify the gas spring, such that it can be used as an actuator, which might later be driven by a
electrical spindle drive (cf. sec. 5.2.2). Two additional spindle flanges (Spindle_a and Spindle_b)
are added to the gas spring model (Gas Spring w/ Spindle) as shown in fig. 5.12. Furthermore,
we use a somewhat stiffer force characteristic (Force of extension F1=400N, Spring rate
x=2; cf. fig. 5.2).

The model of this new gas spring is shown in fig. 5.13. Moving Spindle_bwith respect to Spindle_a
causes a change of the Spring preload. The relative position of Spindle_bwith respect to Spindle_a
shall be within ±0.1m. Positive values can be interpreted as increase and negative values as decrease
of the Spring preload. Please note, that the Spring and Damping are here modeled by sepa-
rates block (instead of a single SpringDamper block as in fig. 5.7), because we are assuming that
movements of the spindle flanges are not afflicted with damping.

Now, lets go back to our complete hatch mechanism in fig. 5.12, we are prescribing a profile for the in
order to open and consecutively close the hatch. A Spindle Position signal (using a Trapezoid
block) s_ref is generated and a translational Position (named Spindle) block is used to prescribe
the spindle position accordingly.

Simulation results, spindle position (blue curve) and hatch angle (red curve), are shown in fig. 5.14.
The spindle position starts at −0.1m (minimal spring preload) and the hatch is fully Closed (−45◦).
The spindle is driven to +0.1m (maximal spring preload) at t=2s and remains there. A visible opening
movement of the hatch starts t ≈ 2s and it travels to the fully Open (+45◦) position. At t=6s the spindle
position is moving towards −0.1m, which is reached at t=8s. The open hatch starts moving at t ≈7s
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(a) Force of Extension F1 = 400N (b) Force of Extension F1 = 500N

Figure 5.8: Hatch Angle versus Time

Figure 5.9: Manually Actuated Hatch Mechanism (HatchMechanismOpening/Closing)
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(a) Opening Push 30N (b) Opening Push35N

(c) Opening Push 40N

Figure 5.10: Operating Force and Hatch Angle

towards it closed position and at t ≈9s the hatch is again fully closed. Thus, we have proved, that the
hatch can be actuated by controlling the preload of the gas spring.

Electrical Spindle Drive

An Electrical Spindle Drive is used to actuate our hatch mechanism as shown in fig. 5.15.
The spindle flanges of the gas spring (Gas Spring w/ Spindle Flange) are connected to an
electrical drive (Electrical Spindle Drive). The spindle drive takes a reference spindle posi-
tion (Ref. Position) as real input signal and provides the actual Position as real output signal.

The content of the super block Electrical Spindle Drive is shown in fig. 5.16. The Spindle
(an IdealGearR2T block; assumed transmission ratio is 1 rotation per 0.00075mm) converts rota-
tional into translational movement and is driven by a DC motor (P/N 339150; cf. fig. 5.3). The motor
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(a) Closing Push 10N (b) Closing Push20N

(c) Closing Push 30N

Figure 5.11: Operating Force and Hatch Angle
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Figure 5.12: Spindle Driven Hatch Mechanism (HatchMechanismActuatedSpindle)

Figure 5.13: Model of Gas Spring with Spindle Flanges
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Figure 5.14: Spindle Position and Hatch Angle

Figure 5.15: Electrically Spindle Driven Hatch Mechanism
(HatchMechanismActuatedSpindleElectrical)
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Figure 5.16: Model of Electrical Spindle Drive

Figure 5.17: Spindle Position and Hatch Angle

has to overcome the inertia of its rotor and the inertia of the spindle (which is modeled by one Rotor &
Spindle inertia block; parameter J=14.5e-7 (rotor) + 3.7e-7 (spindle) = 18.2e-7), and viscous damp-
ing Losses (which are roughly estimated as d=4e-5). Please note, that for the sake of simplicity, we
are not taken COLUMB-like friction/stiction into account. In the electrical domain, the motor is modeled
by a Resistance, an Inductance, and an electro-motoric force (EMF) block. The respective param-
eters are taken from the motor data sheet (cf. fig. 5.3). The motor is driven by a Voltage Source,
which is limited to -12V...+12V. and controlled by a PI Controller.

The PI Controller is effectively used to control the measured Position of the spindle by feed-
back. Thus, it is compared with a desired reference position (Ref. Position) and the control error
is provided as input to the controller.

Simulation results of the electrical actuated hatch mechanism are shown in fig. 5.17. We have used
the same spindle position profile (blue) as in the previous section (cf. fig. 5.14). The actual position
of the spindle (red curve in top diagram) starts at 0.0m and follows, due to the feedback control, suffi-
ciently well the prescribed position profile (blue curve in top diagram). The hatch opens and closes as
expected (cf. bottom diagram in fig. 5.17). Please note, that opening and closing is a little bit delayed in
comparison to our previous results (cf. sec. 5.2.2, fig. 5.14). This is due to the tracking delay introduced
by our electrical spindle drive (cf. fig. 5.17).
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In summary, it is possible to actuate the hatch by by means of an electrical spindle drive which controls
the preload of the gas spring.

5.3 Major Results

Based on the above carried out simulation study, we can summarize the following results:

• We did find appropriate mounting positions B & C for a given spring geometry

• We were able to select a spring force characteristic suitable for manual actuation of the hatch

• We have proved, that it is possible to open and close the hatch automatically by means of an
electrical spindle drive which controls the preload of the spring
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